Chromatic structure of natural scenes.
نویسندگان
چکیده
We applied independent component analysis (ICA) to hyperspectral images in order to learn an efficient representation of color in natural scenes. In the spectra of single pixels, the algorithm found basis functions that had broadband spectra and basis functions that were similar to natural reflectance spectra. When applied to small image patches, the algorithm found some basis functions that were achromatic and others with overall chromatic variation along lines in color space, indicating color opponency. The directions of opponency were not strictly orthogonal. Comparison with principal-component analysis on the basis of statistical measures such as average mutual information, kurtosis, and entropy, shows that the ICA transformation results in much sparser coefficients and gives higher coding efficiency. Our findings suggest that nonorthogonal opponent encoding of photoreceptor signals leads to higher coding efficiency and that ICA may be used to reveal the underlying statistical properties of color information in natural scenes.
منابع مشابه
Spatiochromatic Properties of Natural Images and Human Vision
The human visual system shows a relatively greater response to low spatial frequencies of chromatic spatial modulation than to luminance spatial modulation. However, previous work has shown that this differential sensitivity to low spatial frequencies is not reflected in any differential luminance and chromatic content of general natural scenes. This is contrary to the prevailing assumption tha...
متن کاملA distributed code for color in natural scenes derived from center-surround filtered cone signals
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, w...
متن کاملIndependence of color and luminance edges in natural scenes.
Form vision is traditionally regarded as processing primarily achromatic information. Previous investigations into the statistics of color and luminance in natural scenes have claimed that luminance and chromatic edges are not independent of each other and that any chromatic edge most likely occurs together with a luminance edge of similar strength. Here we computed the joint statistics of lumi...
متن کاملSpatial and temporal aspects of chromatic adaptation and their functional significance for colour constancy
Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes...
متن کاملColor Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This color opponency has been shown to constitute an efficient encoding by spectral decorrelation of the receptor signals. We analyze the spatial and chromatic structure of natural scenes by decomposing the spectral images into a set of linear basis functions ...
متن کاملEffects of chromatic image statistics on illumination induced color differences.
We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2001